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Summary

Human brains are commonly modeled as networks of
Regions of Interest (ROIs) and their connections for the
understanding of brain functions and mental disorders.
Recently, Transformer-based models have been studied
over different types of data, including graphs, shown to
bring performance gains widely. In this work, we study
Transformer-based models for brain network analysis.
Driven by the unique properties of data, we model brain
networks as graphs with nodes of fixed size and order,
which allows us to (1) use connection profiles as node
features to provide natural and low-cost positional
information and (2) learn pair-wise connection strengths
among ROIs with efficient attention weights across
individuals that are predictive towards downstream
analysis tasks. Moreover, we propose an Orthonormal
Clustering Readout operation based on self-supervised
soft clustering and orthonormal projection. This design
accounts for the underlying functional modules that
determine similar behaviors among groups of ROIs,
leading to distinguishable cluster-aware node embeddings
and informative graph embeddings. Finally, we
re-standardize the evaluation pipeline on the only one
publicly available large-scale brain network dataset of
ABIDE, to enable meaningful comparison of different
models. Experiment results show clear improvements of
our proposed Brain Network Transformer on both the
public ABIDE and our restricted ABCD datasets.

Challenges

Complete graph. The simplest and most frequently used
methods to construct a brain network is via pairwise
correlations between BOLD time courses from two ROIs.
This impedes the designs like centrality, spatial, and edge
encoding because each node in the brain network has the
same degree and connects to every other node by one hop.
Positional embeddings. In brain networks, the connection
profile, which is defined as each node’s corresponding row
in the brain network adjacency matrix, is recognized as the
most effective node feature. This node feature naturally
encodes both structural and positional information, making
the aforementioned positional embedding design based on
eigenvalues and eigenvectors redundant.
Scalability. The numbers of nodes in molecule graphs are
less than 50. However, the node number for brain networks
is generally around 100 to 400, while the edge number can
be up to 160,000. Therefore, operations like the generation
of all edge features in existing graph transformers can be
time-consuming, if not infeasible.
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Figure: The overall framework of our proposed Brain Network Transformer.

Multi-Head Self-Attention (MHSA). Formally, we leverage a L-layer
non-linear mapping module to generate more expressive node features
ZL = MHSA(X) ∈ RV×V. For each layer l, the output Zl is obtained by

Zl = (∥M
m=1hl,m)W l

O, hl,m = Softmax
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K
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V Zl−1, (1)

Orthonormal Clustering Readout (OCRead). Based on the
motivation shown in Figure(a), We design a novel readout function to
take advantage of the modular-level similarities between ROIs in brain
networks, where nodes are assigned softly to well-chosen clusters with
an unsupervised process.
Formally, given K cluster centers, each center has V dimensions,
E ∈ RK×V, a Softmax projection operator is used as the function to
calculate the probability Pik of assigning node i to cluster k,

Pik =
e⟨ZL

i·,Ek·⟩∑K
k′ e⟨ZL

i·,Ek′·⟩
, where ⟨·, ·⟩ denotes the inner product and ZL is the

learned set of node embeddings from the last layer of MHSA module.
With this computed soft assignment P, the original learned node
representation ZL can be aggregated to obtain the graph-level
embedding ZG = P⊤ZL. Besides, we also leverage the Gram-Schmidt
process to obtain the orthonormal bases E, which can facilitate the
learning of clusters and embeddings as shown in Figure(b),
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(a) Node features projected to a 3D space 
with PCA. Colors indicate functional modules.

(b) Orthonormal bases can make indistinguishable nodes in non-
orthonormal bases easily distinguishable.

Experiments

Dataset. ABIDE contains brain networks from 1009 subjects, with 516
(51.14%) being Autism spectrum disorder (ASD) patients (positives). The
region definition is based on Craddock 200 atlas. ABCD includes 7901
subjects, with 3961 (50.1%) among them being female. The region definition
is based on the HCP 360 ROI atlas.
RQ1. How does BrainNetTF perform compared with state-of-the-art
models of various types?

Table: Performance comparison with different baselines (%).

Type Method
Dataset: ABIDE Dataset: ABCD

AUROC Accuracy Sensitivity Specificity AUROC Accuracy Sensitivity Specificity

Graph
Transformer

SAN 71.3±2.1 65.3±2.9 55.4±9.2 68.3±7.5 90.1±1.2 81.0±1.3 84.9±3.5 77.5±4.1
Graphormer 63.5±3.7 60.8±2.7 78.7±22.3 36.7±23.5 89.0±1.4 80.2±1.3 81.8±11.6 82.4±7.4

VanillaTF 76.4±1.2 65.2±1.2 66.4±11.4 71.1±12.0 94.3±0.7 85.9±1.4 87.7±2.4 82.6±3.9

Fixed
Network

BrainGNN 62.4±3.5 59.4±2.3 36.7±24.0 70.7±19.3 OOM OOM OOM OOM
BrainGB 69.7±3.3 63.6±1.9 63.7±8.3 60.4±10.1 91.9±0.3 83.1±0.5 84.6±4.3 81.5±3.9

BrainNetCNN 74.9±2.4 67.8±2.7 63.8±9.7 71.0±10.2 93.5±0.3 85.7±0.8 87.9±3.4 83.0±4.4

Learnable
Network

FBNETGNN 75.6±1.2 68.0±1.4 64.7±8.7 62.4±9.2 94.5±0.7 87.2±1.2 87.0±2.5 86.7±2.8
BrainNetGNN 55.3±1.9 51.2±5.4 67.7±37.5 33.9±34.2 75.3±5.2 67.5±4.7 67.7±5.7 68.0±6.5

DGM 52.7±3.8 60.7±12.6 53.8±41.2 51.1±40.9 76.8±19.0 68.6±8.1 40.5±29.7 95.6±4.2

Ours BrainNetTF 80.2±1.0 71.0±1.2 72.5±5.2 69.3±6.5 96.2±0.3 88.4±0.4 89.4±2.6 88.4±1.5

RQ2. How does our proposed OCReadmodule perform with different
model choices?

Table: Performance comparison AUROC (%) with different readout functions.

Readout
Dataset: ABIDE Dataset: ABCD

SAN Graphormer VanillaTF SAN Graphormer VanillaTF

MEAN 63.7±2.4 50.1±1.1 73.4±1.4 88.5±0.9 87.6±1.3 91.3±0.7
MAX 61.9±2.5 54.5±3.6 75.6±1.4 87.4±1.1 81.6±0.8 94.4±0.6
SUM 62.0±2.3 54.1±1.3 70.3±1.6 84.2±0.8 71.5±0.9 91.6±0.6

SortPooling 68.7±2.3 51.3±2.2 72.4±1.3 84.6±1.1 86.7±1.0 89.9±0.6
DiffPool 57.4±5.2 50.5±4.7 62.9±7.3 78.1±1.5 70.0±1.9 83.9±1.3

CONCAT 71.3±2.1 63.5±3.7 76.4±1.2 90.1±1.2 89.0±1.4 94.3±0.7

OCRead 70.6±2.4 64.9±2.7 80.2±1.0 91.2±0.7 90.2±0.7 96.2±0.4

(a) Influence of two key  hyper-parameters for model performance. (b) Attention heatmap on ABCD.

Figure: The hyper-parameter influence and the heatmap from self-attention.

RQ3. Does the learned model of BrainNetTF exhibit consistency with
existing neuroscience knowledge and suggest reasonable explainability?
Answer: Figure(b) displays the self-attention score from the first layer of
Multi-Head Self-Attention. The attention scores are the average across all
subjects in the ABCD test set. This figure shows that the learned attention
scores well match the divisions of functional modules based on available
labels, demonstrating the effectiveness and explainability of our Transformer
model. More results can be found in our paper.


