Graph Structure Learning For GNNs

Learn the optimal graph for GNNs

Xuan Kan xuan.kan@emory.edu Department of Computer Science, Emory University

Learning Discrete Structures for Graph Neural Networks

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He. ICML 2019

MOTIVATION

1. Graph neural networks (GNNs) are a popular and powerful since they can incorporate graph structures.

2. In practice, however, real-world graphs are often **noisy** and **incomplete** or might **not be available** at all.

TARGET

- 1. Firstly, learn a graph structure through datapoints or complete the incomplete graph.
- 2. Then apply GNNs with the new graph to achieve better performance.

PRELIMINARY: GCN

PRELIMINARY: Bilevel Programming

To find the optimal toll setting, government need to consider drivers' options

METHOD: Define the problem

Outer Problem: Find a graph, minimize the validation loss.

 θ , ω are learnable parameters.

 $\min_{\theta \in \overline{\mathcal{H}}_N} \mathbb{E}_{A \sim \operatorname{Ber}(\theta)} \left[F(w_{\theta}, A) \right]$ such that $w_{\theta} = \arg \min_w \mathbb{E}_{A \sim \operatorname{Ber}(\theta)} \left[L(w, A) \right].$

Inner Problem: Given a graph, learn a GNN to minimize the training loss.

METHOD: Optimize the problem

- 1. Treat the graph structure as hyperparameters. (Meta learning problem)
- 2. Common methods to learn optimal hyperparameters:
 - 1. Grid Search
 - 2. Random Search
 - 3. Bayesian Optimization
 - 4. Reinforcement Learning
 - 5. Gradient-based Methods

METHOD: Overall Flow

Figure 1. Schematic representation of our approach for learning discrete graph structures for GNNs.

METHOD: Graph Generator

- 1. Learnable parameters: $\theta \in \mathbb{R}^{n*n}$, $\theta_{i,j}$ means the probability that node *i* connects to node *j*.
- 2. Input: Nothing
- 3. Output: adjacency matrix A, $A \sim Ber(\theta)$.

Method: Algorithm

Algorithm 1 LDS

1: Input data: X, Y, Y'[, A]2: Input parameters: $\eta, \tau[, k]$ 3: $[A \leftarrow kNN(X, k)]$ {Init. A to kNN graph if A = 0} 4: $\theta \leftarrow A$ {Initialize P_{θ} as a deterministic distribution} 5: while Stopping condition is not met do 6: $t \leftarrow 0$ 7: while Inner objective decreases do 8: $A_t \sim \operatorname{Ber}(\theta)$ {Sample structure} $w_{\theta,t+1} \leftarrow \Phi_t(w_{\theta,t}, A_t)$ {Optimize inner objective} 9: 10: $t \leftarrow t+1$ 11: **if** $t = 0 \pmod{\tau}$ or $\tau = 0$ then 12: $G \leftarrow \text{computeHG}(F, Y, \theta, (w_{\theta,i})_{i=t-\tau}^t)$ $\theta \leftarrow \operatorname{Proj}_{\overline{\mathcal{H}}_N}[\theta - \eta G] \quad \{\text{Optimize outer objective}\}$ 13: 14: end if 15: end while 16: end while 17: return $w, P_{\theta} \in \{\text{Best found weights and prob. distribution}\}$

Method: Algorithm

Algorithm 1 LDS

```
1: Input data: X, Y, Y'[, A]
 2: Input parameters: \eta, \tau[, k]
 3: [A \leftarrow kNN(X, k)] {Init. A to kNN graph if A = 0}
 4: \theta \leftarrow A {Initialize P_{\theta} as a deterministic distribution}
 5: while Stopping condition is not met do
 6: t \leftarrow 0
 7:
     while Inner objective decreases do
 8: A_t \sim \operatorname{Ber}(\theta)
                                                        {Sample structure}
 9: w_{\theta,t+1} \leftarrow \Phi_t(w_{\theta,t}, A_t) {Optimize inner objective}
10: t \leftarrow t+1
11: if t = 0 \pmod{\tau} or \tau = 0 then
12: G \leftarrow \text{computeHG}(F, Y, \theta, (w_{\theta,i})_{i=t-\tau}^t)
             \theta \leftarrow \operatorname{Proj}_{\overline{\mathcal{H}}_N}[\theta - \eta G] \quad \{\text{Optimize outer objective}\}
13:
14:
           end if
15:
        end while
16: end while
17: return w, P_{\theta} \in \{\text{Best found weights and prob. distribution}\}
```

Method: Algorithm

Algorithm 1 LDS

```
1: Input data: X, Y, Y'[, A]
 2: Input parameters: \eta, \tau[, k]
 3: [A \leftarrow kNN(X, k)] {Init. A to kNN graph if A = 0}
 4: \theta \leftarrow A {Initialize P_{\theta} as a deterministic distribution}
 5: while Stopping condition is not met do
 6: t \leftarrow 0
 7:
      while Inner objective decreases do
 8:
                                                       {Sample structure}
     A_t \sim \operatorname{Ber}(\theta)
      w_{\theta,t+1} \leftarrow \Phi_t(w_{\theta,t}, A_t)  {Optimize inner objective}
 9:
10: t \leftarrow t+1
11: if t = 0 \pmod{\tau} or \tau = 0 then
12: G \leftarrow \text{computeHG}(F, Y, \theta, (w_{\theta,i})_{i=t-\tau}^t)
             \theta \leftarrow \operatorname{Proj}_{\overline{\mathcal{H}}_N}[\theta - \eta G] \quad \{\text{Optimize outer objective}\}
13:
14:
           end if
15:
        end while
16: end while
17: return w, P_{\theta} \in \{\text{Best found weights and prob. distribution}\}
```

EXPERIMENTS

- 1. Node classification on incomplete graphs
 - 1. Aim: Evaluate the robustness and effectiveness with incomplete graphs.
 - 2. Method: Construct graphs with missing edges by randomly sampling 25%, 50%, and 75% of the edges on Cora and Citeseer.
- 2. Classification on dataset without graph structures
 - 1. Aim: Evaluate the effectiveness on dataset without graph structures.
 - 2. Method: Build a population graph among samples, then evaluate as the node classification task.
- 3. Visualize the probability distribution in $\boldsymbol{\theta}$
 - 1. Aim: Demonstrate why learnable graph can improve node classification performance.
 - 2. Method: Compare the average probability that a node connects to these same class nodes and other class nodes.

EXPERIMENT1

Figure 2. Mean accuracy \pm standard deviation on validation (early stopping; dashed lines) and test (solid lines) sets for edge deletion scenarios on Cora (left) and Citeseer (center). (Right) Validation of the number of steps τ used to compute the STE hypergradient (Citeseer); $\tau = 0$ corresponds to alternating minimization. All results are obtained from five runs with different random seeds.

EXPERIMENT2: Baseline

- 1. Sparse-GCN: a sparse random graph
- 2. Dense-GCN: a dense graph with equal edge probabilities
- 3. RBF-GCN: a dense RBF kernel on the input features
- 4. kNN-GCN: a sparse k-nearest neighbor graph on the input features
- 5. FFNN: feed-forward neural networks

EXPERIMENT2

Table 1. Test accuracy (\pm standard deviation) in percentage on various classification datasets. The best results and the statistical competitive ones (by paired t-test with $\alpha = 0.05$) are in bold. All experiments have been repeated with 5 different random seeds. We compare kNN-LDS to several supervised baselines and semi-supervised learning methods. No graph is provided as input. kNN-LDS achieves high accuracy results on most of the datasets and yields the highest gains on datasets with underlying graphs (Citeseer, Cora).

	Wine	Cancer	Digits	Citeseer	Cora	20news	FMA
LogReg	92.1 (1.3)	93.3 (0.5)	85.5 (1.5)	62.2 (0.0)	60.8 (0.0)	42.7 (1.7)	37.3 (0.7)
Linear SVM	93.9 (1.6)	90.6 (4.5)	87.1 (1.8)	58.3 (0.0)	58.9 (0.0)	40.3 (1.4)	35.7 (1.5)
RBF SVM	94.1 (2.9)	91.7 (3.1)	86.9 (3.2)	60.2 (0.0)	59.7 (0.0)	41.0 (1.1)	38.3 (1.0)
RF	93.7 (1.6)	92.1 (1.7)	83.1 (2.6)	60.7 (0.7)	58.7 (0.4)	40.0 (1.1)	37.9 (0.6) *
FFNN	89.7 (1.9)	92.9 (1.2)	36.3 (10.3)	56.7 (1.7)	56.1 (1.6)	38.6 (1.4)	33.2 (1.3)
LP	89.8 (3.7)	76.6 (0.5)	91.9 (3.1)	23.2 (6.7)	37.8 (0.2)	35.3 (0.9)	14.1 (2.1)
ManiReg	90.5 (0.1)	81.8 (0.1)	83.9 (0.1)	67.7 (1.6)	62.3 (0.9)	46.6 (1.5)	34.2 (1.1)
SemiEmb	91.9 (0.1)	89.7 (0.1)	90.9 (0.1)	68.1 (0.1)	63.1 (0.1)	46.9 (0.1)	34.1 (1.9)
Sparse-GCN	63.5 (6.6)	72.5 (2.9)	13.4 (1.5)	33.1 (0.9)	30.6 (2.1)	24.7 (1.2)	23.4 (1.4)
Dense-GCN	90.6 (2.8)	90.5 (2.7)	35.6 (21.8)	58.4 (1.1)	59.1 (0.6)	40.1 (1.5)	34.5 (0.9)
RBF-GCN	90.6 (2.3)	92.6 (2.2)	70.8 (5.5)	58.1 (1.2)	57.1 (1.9)	39.3 (1.4)	33.7 (1.4)
kNN-GCN	93.2 (3.1)	93.8 (1.4)	91.3 (0.5)	68.3 (1.3)	66.5 (0.4)	41.3 (0.6)	37.8 (0.9)
kNN-LDS	97.3 (0.4)	94.4 (1.9)	92.5 (0.7)	71.5 (1.1)	71.5 (0.8)	46.4 (1.6)	39.7 (1.4)

EXPERIMENT3

Figure 3. Mean edge probabilities to nodes aggregated w.r.t. four groups during LDS optimization, in log_{10} scale for three example nodes. For each example node, all other nodes are grouped by the following criteria: (a) adjacent in the ground truth graph; (b) same class membership; (c) different class membership; and (d) unknown class membership. Probabilities are computed with LDS ($\tau = 5$) on Cora with 25% retained edges. From left to right, the example nodes belong to the training, validation, and test set, respectively. The vertical gray lines indicate when the inner optimization dynamics restarts, that is, when the weights of the GCN are reinitialized.

LDS can learn highly non-uniform edge probabilities that reflect the class membership of the nodes.

INSIGHTS

- 1. Classification problem can also use graph structure (learnable or kNN) to achieve more efficient and stable performance. (In practice, we find kNN graph is helpful for small dataset.)
- 2. To learn graph structure, an initial graph is needed since the search space of a graph is too large (2^{n*n}) .
- 3. The authors only demonstrate the performance improvement of their method(LDS), do not show the ability of graph completion. (How many true links are recovered?)
- 4. Although authors have a general statement, they only test LDS on the node classification task. (For graph classification task, is LDS still useful?)

DISCRETE GRAPH STRUCTURE LEARNING FOR FORECASTING MULTIPLE TIME SERIES

Chao Shang, Jie Chen, and Jinbo Bi. ICLR 2021

Main Method Differences

Data Augmentation for Graph Neural Networks

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, Neil Shah. AAAI 2021.

INTUITION

In the graph node classification task, there are two kinds of edges, intra-class edges and inter-class edges. Due to GNN message passing mechanism, adding intra-class edges and removing inter-class edges can make the node embedding from same classes more similar and improve node classification performance.

REFERENCE

- 1. Learning Discrete Structures for Graph Neural Networks Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He. ICML 2019
- 2. Discrete Graph Structure Learning for Forecasting Multiple Time Series Chao Shang, Jie Chen, and Jinbo Bi. ICLR, 2021.
- 3. Data Augmentation for Graph Neural Networks Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, Neil Shah. AAAI 2021

THANKS

Does anyone have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**. **Please keep this slide for attribution.**