| Graph Structure
Learmng For GNNs

/ Learn the optimal graph for GNNs

_— Xuan Kan
rd X xuan.kan@emory.edu
i Department of Computer Science, Emory University




Learning Discrete Structures for
Graph Neural Networks

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He. ICML 2019




MOTIVATION

1. Graph neural networks (GNNs) are a popular and powerful since they can incorporate graph
structures.

2. In practice, however, real-world graphs are often noisy and incomplete or might not be available
at all.



TARGET

1. Firstly, learn a graph structure through datapoints or complete the incomplete graph.

2. Then apply GNNs with the new graph to achieve better performance.




PRELIMINARY: GCN

fu(X, A) = Softmax(A ReLu(A X W;) Wa),



PRELIMINARY: Bilevel Programming

Toll-setting problem
After toll setting, how

How to set tolls to choose routes can
can maximize my minimize my traveling
revenues. costs.

Outer Problem Inner Problem

A
N

To find the optimal toll setting, government need to consider drivers’ optionS\



METHOD: Define the problem

Outer Problem: 6, w are learnable parameters.
Find a graph,

minimize the
validation loss.

ming 7 Ea~Ber(o) [F(wy, A)]
such that wy = argmin,, E 4 per(s) [L(w, A)].

. i ".‘"

Inner Problem: Given a ’ ~—
graph, learn a GNN to
minimize the training loss.



METHOD: Optimize the problem

1. Treat the graph structure as hyperparameters. (Meta learning problem)
2. Common methods to learn optimal hyperparameters:

1. Grid Search

2. Random Search

3. Bayesian Optimization

4. Reinforcement Learning

5. Gradient-based Methods




METHOD: Overall Flow

Initialize Sample graphs Compute gradients of and Compute hypergradients
Datapoints ~ Parameters update GCN parameters and update 0 of graph generator
A~Py Validat
©0 g | Gmph g P Wi, = O(W,A|) = w- YVL(WA) Vo E[F(We., 0)] B
O O generator: > e

© o w. Wi e— W
@) ~P t t+r-1e Wittt “—0
. 0
SO w ﬁ%;)f > W™ Werp = YV (W 1,A0) \é/ .

Figure 1. Schematic representation of our approach for learning discrete graph structures for GNNs.




METHOD: Graph Generator

1. Learnable parameters: 8 € R™™", 8; ; means the probability that node i connects to node ;.
2. Input: Nothing

3. Output: adjacency matrix A, A ~ Ber(6).




Method: Algorithm

Algorithm 1 LDS
1: Input data: X,Y,Y'[, A]
2: Input parameters: 7, 7[, k]
3: [A < kNN(X, k)] {Init. A to kNN graphif A = 0}
4: 0 A {Initialize P, as a deterministic distribution}
S: while Stopping condition is not met do
6: t<+0
7:  while Inner objective decreases do
8: A¢ ~ Ber(6) {Sample structure}
o we 141  Pe(we, Ar)  {Optimize inner objective}

10: t+—t+1

11: ift = 0 (mod 7) or 7 = 0 then

12: G + computeHG(F,Y, 0, (we ;)i i)

13: 0 < Projz;, [0 —nG] {Optimize outer objective}
14: end if

15:  end while
16: end while .
17: return w, Py  {Best found weights and prob. distribution}

*—



Method: Algorithm

Algorithm 1 LDS
1: Input data: X,Y,Y'[, A]
2: Input parameters: 7, 7[, k]
3: [A < kNN(X, k)] {Init. A to kNN graph if A = 0}
4: 0+ A {Initialize P as a deterministic distribution}
S: while Stopping condition is not met do
6: t<+0
7:  while Inner objective decreases do
8: A¢ ~ Ber(6) {Sample structure}
o we 141  Pe(we, Ar)  {Optimize inner objective}

10: t<—t+1

11: ift = 0 (mod 7) or 7 = 0 then

12: G + computeHG(F,Y, 0, (we ;)i i)

13: 0 < Projz;, [0 —nG] {Optimize outer objective}
14: end if

15:  end while
16: end while .
17: return w, Py  {Best found weights and prob. distribution}

*—



Method: Algorithm

Algorithm 1 LDS
1: Input data: X,Y,Y'[, A]
2: Input parameters: 7, 7[, k]
3: [A < kNN(X, k)] {Init. A to kNN graph if A = 0}
4: 0+ A {Initialize P as a deterministic distribution}
S: while Stopping condition is not met do
6: t<«0
7:  while Inner objective decreases do
8: A¢ ~ Ber(6) {Sample structure}
o we 141  Pe(we, Ar)  {Optimize inner objective}

10: t+—t+1

11: ift = 0 (mod 7) or 7 = 0 then

12: G + computeHG(F,Y, 0, (we :)ics_,)

13: 0 < Projz; [0 —nG] {Optimize outer objective}
14: end if

15:  end while
16: end while .
17: return w, Py  {Best found weights and prob. distribution}

*—



EXPERIMENTS

1. Node classification on incomplete graphs
1. Aim: Evaluate the robustness and effectiveness with incomplete graphs.

2. Method: Construct graphs with missing edges by randomly sampling 25%, 50%, and 75% of the
edges on Cora and Citeseer.

2. Classification on dataset without graph structures

1. Aim: Evaluate the effectiveness on dataset without graph structures.

2. Method: Build a population graph among samples, then evaluate as the node classification task. —\ -

3. Visualize the probability distribution in 6
1. Aim: Demonstrate why learnable graph can improve node classificatipn performance.

2. Method: Compare the average probability that a node connects to these same Class nodes and P
other class nodes. | NN .



~
o
!

65 -

LDS (t=5)
—— GCN-RND

25

50

75 100

EXPERIMENT1

65.0

62.5 -

85
75.0 - - :

80 - 7254, -
- | ez = | | aeml==
@ 70.0 e
5 75 - :

o
< 67.5 -

—— LDS (t=5)
—— GCN-RND

68 -

66 -

—— LDS (t=0)
—+— LDS (t=5)
—+=~ LDS (t=20)

50 75 100

50

75 100

Retained edges (%) Retained edges (%) Retained edges (%)

Figure 2. Mean accuracy =+ standard deviation on validation (early stopping; dashed lines) and test (solid lines) sets for edge deletion
scenarios on Cora (left) and Citeseer (center). (Right) Validation of the number of steps 7 used to compute the STE hypergre}hent"””"
(Citeseer); 7 = 0 corresponds to alternating minimization. All results are obtained from five runs with different random seeds .~




EXPERIMENTZ2: Baseline

. Sparse-GCN: a sparse random graph
. Dense-GCN: a dense graph with equal edge probabilities
. RBF-GCN: a dense RBF kernel on the input features

. kNN-GCN: a sparse k-nearest neighbor graph on the input features

. FFNN: feed-forward neural networks



EXPERIMENT2

Table 1. Test accuracy (+ standard deviation) in percentage on various classification datasets. The best results and the statistical
competitive ones (by paired t-test with « = 0.05) are in bold. All experiments have been repeated with 5 different random seeds. We
compare kKNN-LDS to several supervised baselines and semi-supervised learning methods. No graph is provided as input. kNN-LDS
achieves high accuracy results on most of the datasets and yields the highest gains on datasets with underlying graphs (Citeseer, Cora).

Wine Cancer Digits Citeseer Cora 20news FMA
LogReg 92.1(1.3) 93.3(0.5) 855(1.5) 62.2(0.0) 60.8(0.0) 42.71.7) 37.3(0.7)
Linear SVM 939(1.6) 90.6 (4.5) 87.1(1.8) 583(0.0)0 589(0.0)0 403(14) 35.7(L5)
RBF SVM 94.129) 91.73.1) 869(3.2) 60.2(0.0) 59.7(0.0) 41.0(1.1) 38.3(1.0)
RF 93.7(1.6) 92.1(1.7) 83.1(2.6) 60.7(0.7) 58.7(0.4) 40.0(1.1) 37.9(0.6)
FFNN 89.7(19) 929(1.2) 36.3(103) 56.7(1.7) 56.1(1.6) 38.6(1.4)" 33.2(1.3)
LP 890.8(3.7) 76.6(0.5) 91.9@3.1) 232(6.7) 37.8(0.2) 35309 14.12.1)
ManiReg 90.5(0.1) 81.8(0.1) 839(0.1) 67.7(1.6) 623(09) 46.6(1.5) 34.2(1.1)
SemiEmb 91.9(0.1) 89.7(0.1) 90.9(0.1) 68.1(0.1) 63.1(0.1) 46.9(0.1) 34,1(1.9)
Sparse-GCN  63.5(6.6) 7252.9) 13415 33.1(09) 30.6(2.1) 24701.2) 234(1.4)
Dense-GCN  90.6 (2.8) 90.5(2.7) 35.6(21.8) 58.4(1.1) 59.1(0.6) 40.1(1.5) 34509
RBF-GCN 90.6 (2.3) 92.6(2.2) 70.8(5.5) 58.1(1.2) 57.1(1.9) 393(14) 33.7(14)
kKNN-GCN 932(3.1) 93.8(14) 91.3(0.5 683(1.3) 665(04) 413(0.6) 37.8(0.9)
kKNN-LDS 97.3(04) 944(19) 925(0.79 71.5(01.1) 71.5(0.8),

46.4 (1.6)

39.7. (14) “1



EXPERIMENT3

10Y 10V 5 10v
3 —— True links (3 node)
101! 107 4 10~ { —— Same class
>
= —— Different classes
= =2 -2 f -2
e 10 L L —— Unknown classes
Q I +
-3 < -3 — - -3
g 10 /...--—-\/A,w 10 3 107 4
c —— True links (5 nodes) —— True links (1 node)
-4 —4 —4 - - o— S
E 0 —— Same class Ay —— Sameclass 10 — K]
10-5 —— Different classes 10-5 —— Different classes 10-5 .
——— Unknown classes Unknown classes
10_6 T T T T 10 6 T T T T 10 6 T T 2 T T
0 250 500 750 0 250 500 750 0 250 500 750
Inner optimization steps Inner optimization steps Inner optimization steps

Figure 3. Mean edge probabilities to nodes aggregated w.r.t. four groups during LDS optimization, in log1o scale for three example nodes.
For each example node, all other nodes are grouped by the following criteria: (a) adjacent in the ground truth, graph; (b). same/class
membership; (c) different class membership; and (d) unknown class membership. Probabilities are computed with LDS (7 = ;'))/on Cora

with 25% retained edges. From left to right, the example nodes belong to the training, validation, and test set, respectlve The vertlca)/
gray lines indicate when the inner optimization dynamics restarts, that is, when the weights of the GCN are reinitialized. \




INSIGHTS

. Classification problem can also use graph structure (learnable or kNN) to achieve more
efficient and stable performance. (In practice, we find kNN graph is helpful for small dataset.)

. To learn graph structure, an initial graph is needed since the search space of a graph is too
large (2™7).

. The authors only demonstrate the performance improvement of their method(LDS), do not
show the ability of graph completion. (How many true links are recovered?)

. Although authors have a general statement, they only test LDS on the node classification task.
(For graph classification task, is LDS still useful?)



DISCRETE GRAPH STRUCTURE LEARNING
FOR FORECASTING MULTIPLE TIME SERIES

Chao Shang, Jie Chen, and Jinbo Bi. ICLR 2021




Main Method Differences

LDS:

ming 77 EavBer(o) [F'(wo, 4)]
such that wy = argmin,, E 4 per(s) [L(w, A)].

GTS:
Hgn EANBer(@) [F (A7 w, Xtrajn)]~

End2End Learning



Data Augmentation for

Graph Neural Networks
Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, Neil Shah. AAAI 2021 »




INTUITION

In the graph node classification task, there are two kinds of edges, intra-class edges and inter-class edges.
Due to GNN message passing mechanism, adding intra-class edges and removing inter-class edges can
make the node embedding from same classes more similar and improve node classification performance.

What we want

| %

(a) Original graph.




REFERENCE

Learning Discrete Structures for Graph Neural Networks
Luca Franceschi, Mathias Niepert, Massimiliano Pontil, Xiao He. ICML 2019

Discrete Graph Structure Learning for Forecasting Multiple Time Series
Chao Shang, Jie Chen, and Jinbo Bi. ICLR, 2021.

. Data Augmentation for Graph Neural Networks .
Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, Neil Shah. AAAI 2021




THANKS

Does anyone have any questions?

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, and infographics & images by Freepik.

Please keep this slide for attribution.



http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

